

301 - 302 - 303

PRESSURE TRANSMITTER

FOR PRESSURE, LEVEL AND FLOW APPLICATIONS

 ±0.2% of URL Stability - Guarantee for 12 Years

- 120:1 Rangeability
- Non-volatile Totalizer

Tank Linearization

- APPROVED
- 100 ms Total Response Time

- PID Control Capability
- Bi-directional Flow Measurement

- Advanced Diagnostics
- Largest Library of Function

- Instantiable Function Blocks
- Supported by DD, EDDL and FDT/ DTM

Three Technology Options

- ± 0.04% high performance option;
- ± 0.2% of URL stability;
- 120:1 rangeability;
- Span as small as 50 Pa (0.2 inH₂O) up to a range limit of 40 MPa (5800 psi);
- Up to 52 MPa static pressure (7500 psi);
- Direct digital capacitance sensing (no A/D conversion);
- True non-interactive zero and span;
- Local zero and span adjustment;
- Remote calibration and parameterization;
- Transfer functions: linear, \(\nabla \), \(\nabla \) \(\nabla \) \(\nabla \)
- Tank linearization;
- Alphanumerical LCD indication;
- Small and lightweight;
- Explosion proof and weather proof housing approved (IP66/68 or IP66/68W);
- Intrinsically safe certification;
- Signal simulation for loop tests;
- Non-volatile flow totalization;
- Configurable user unit;
- Configurable local adjustment;
- EMC (Electromagnetic Compatibility) according to IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-6-4:2006, IEC61000-6-2:2005;
- Write protection function;
- Three technology options: HART®, Foundation™ fieldbus, PROFIBUS PA.

HART® - 4 to 20 mA

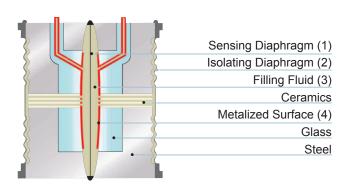
- Update output current in 100 ms with 0.75 μA resolution;
- Improved performance due to dedicated math co-processor;
- Multidrop operation mode;
- PID control function;
- Supports DTM and EDDL;
- Bi-directional flow measurement;
- With FMEDA analysis and MTBF of 244 years.

FOUNDATIONTM fieldbus

- 17 different types of function blocks for control strategies and advanced diagnostics;
- Up to 20 function blocks;
- Execution of up to 29 external links;
- 12 mA consumption;
- Dynamic block instantiation improves interchangeability;
- Fieldbus Foundation[™] registered and ITK approved;
- MVC (Multivariable Container) enabled;
- MTBF of 186 years.

PROFIBUS PA

- 12 mA consumption;
- Function blocks for analog input and totalization;
- Integrated to Smar ProfibusView or Simatic PDM;
- Supports DTM and EDDL;
- Profile 3.0 improves interchangeability;
- MTBF of 186 years.



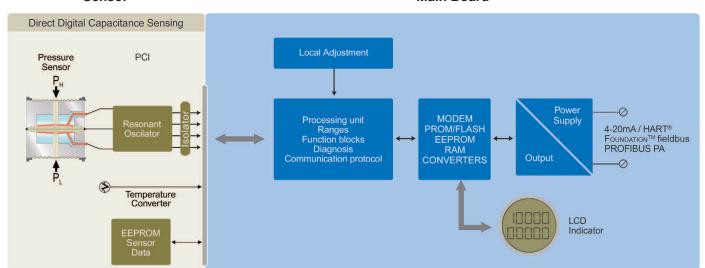
LD300 Series offers:

- ± 0.04% accuracy for high performance option;
- ± 0.2% of URL stability guarantee for 12 Years;
- 120:1 rangeability;
- Compact and lightweight;
 Multiple Protocol Options.

LD300 Series uses the field-proven technique of capacitance cell sensor measurement.

The sensor is shown in the picture above. The sensing diaphragm (1) is at the cell center. The diaphragm deflects as a result of the difference between the pressures applied to the left and right sides of the sensor. Pressure is directly applied to the isolating diaphragms (2), which provide resistance against process fluid corrosion. The pressure is transmitted to the sensing diaphragm through the filling fluid (3).

The sensing diaphragm is a moving capacitor plate while the two metallized surfaces (4) are fixed plates. The sensing diaphragm deflection results in capacitance variations between the moving and fixed plates.


The electronic resonance circuit reads capacitance variation between the moving and fixed plates. The CPU conditions the measurement and communicates according to protocol. As there is no A/D conversion, errors and drifts during conversions are eliminated. A temperature sensor provides temperature compensations, which combined with the sensor precision, results in high accuracy and rangeability for the **LD300 Series**.

The process variable, as well as monitoring and diagnostics information, are provided by digital communication protocol.

The available protocol options are: HART®, FOUNDATION™ fieldbus and PROFIBUS PA.

These protocols are easily changed by either replacing the internal electronic board or downloading the firmware. A HART® transmitter can be changed into a FOUNDATIONTM fieldbus / PROFIBUS PA device by replacing the internal card, and vice versa. A FOUNDATIONTM fieldbus device can be changed into a PROFIBUS PA device and vice versa, by simply downloading a new firmware.

Sensor Main Board

Differential Pressure - LD300D and LD300H

Pressure is applied to high and low sides and differential pressure is measured. High static pressure is supported by **LD300H** models.

Flow - LD300D and LD300H

The differential pressure is generated by a primary flow element and the square root function computes the flow measurement.

Absolute Pressure - LD300A

The pressure is measured at the high side of the transmitter and the low side is at zero absolute reference to a sealed chamber with vaccum.

Gage Pressure - LD300M

The pressure is measured at the high side of the transmitter and the low side is open to the atmosphere, providing true local atmospheric reference.

Level - LD300L

The transmitter has a flange mounted unit for direct installation on vessels. Extended diaphragms are also available. For closed tank low side can compensate for ullage pressure.

Remote Seals

SR301 is a remote seal designed for chemical and thermal isolation. **LD300 Series** can be assembled with separate diaphragm seals in either one or both sides of the sensor. SR301 options include: "T" Type Flanged (SR301T), Threaded (SR301R), Pancake (SR301P) where those three models with an optional flush connection, Sanitary (SR301S), Flanged with Extension (SR301E) and Pancake with Extension (SR301Q).

The flush connection enables deposits removal without disconnecting the seal.

Typical applications for **LD300 Series** with remote seals:

- Corrosive process fluid;
- Suspended solids or viscous process fluid;
- Process fluids that may freeze or solidify;
- Process temperatures higher than supported by transmitters;
- Replaces impulse lines and condensate legs;
- Bubble system.

See the Smar SR301 Series catalog for further information regarding application and specification.

Sanitary Transmitter

LD300S Series are specially designed for food and other applications where sanitary connections are required. With threaded or "tri-clamp" connections, it allows for easy and quick maintenance and cleaning. Tri-clamp and other connections are compliant to 3A-7403 standard for food grade applications.

For further information, see the Smar SR301 Series Catalog.

Manifold Valves

Smar manifold valves provide all of the necessary safety for field maintenance of **LD300 Series** transmitters. Working at pressures up to 6,000 psi, they are easy to handle and lighter than others in the market. Pressure and leakage tests carried out in 100% of the valves, also for models mounted on the transmitter. For further information, please see the Smar Manifold Valves Catalog.

LD300 Series are available in three different technologies: HART® (**LD301**), FOUNDATIONTM fieldbus (**LD302**) and PROFIBUS PA (**LD303**).

These instruments can be configured with Smar software and other manufacturers' configuration tools.

Local adjustment is available in all **LD300 Series**. It is possible to configure zero and span, totalization, set point and other control functions using the magnetic screwdriver.

Smar has developed AssetView, which is a user-friendly Web Tool that can be accessed anywhere and anytime using an Internet browser. It is designed for management and diagnostics of field devices to ensure reactive, preventive, predictive and proactive maintenance.

HART® - LD301

LD301 (HART® protocol) can be configured by:

- Smar CONF401 for Windows;
- Smar DDCON100 for Windows:
- Smar HPC301 and HPC401 for several models of Palm;
- Other manufacturers' configuration tools based on DD (Device Description) or DTM (Device Type Manager), such as AMS[™], FieldCare[™], PACTware[™], HHT275 and HHT375, PRM Device Viewer.

For **LD301** management and diagnostics, AssetView ensures continuous information monitoring.

Universal HART® Configuration Software

HPC401

FOUNDATION[™] fieldbus - LD302

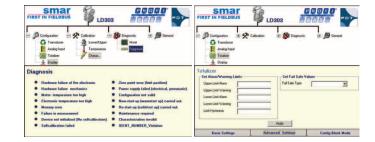
LD302 utilizes the Foundation™ fieldbus H1 protocol, an open technology that allows any H1 enabled configuration tool to configure this device.

Syscon302 (System Configuration Tool) is a software tool used to configure, maintain and operate the field devices. Syscon offers efficient and friendly interaction with the user, using Windows.

Configuration tools such as AMS[™], FieldCare[™] and HHT375 can configure **LD302** devices. DD (Device Description) and CF (Capability File) files can be downloaded at either the Smar or Fieldbus Foundation[™] website.

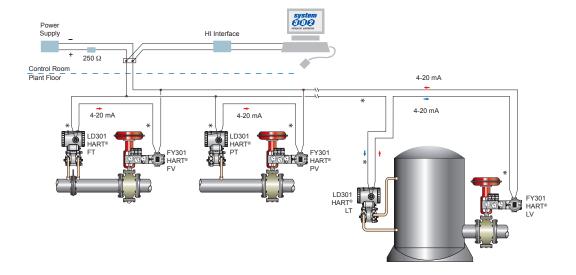
LD302 supports complex strategies configurations due to the high capacity and variety of dynamic instantiable function blocks.

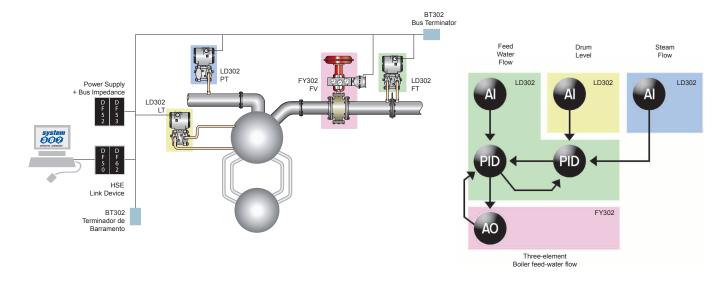
Seventeen different types of function blocks are supported, and up to 20 function blocks can be running simultaneously.

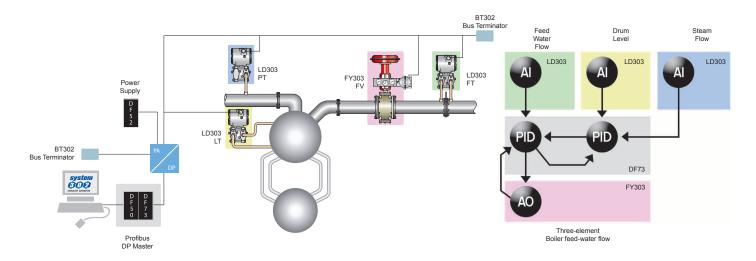

Maintenance procedures with AssetView diagnostics and status information from FoundationTM fieldbus result in a safer plant with higher availability.

PROFIBUS PA - LD303

LD303 (PROFIBUS PA protocol) can be configured using Smar ProfibusView or Simatic PDM and by the FDT (Field Device Tool) and DTM (Device Type Manager) concept tools, such as FieldCare™ and PACTware™. It can also be integrated by any PROFIBUS System using the GSD file.


PROFIBUS PA also has quality and diagnostic information, improving plant management and maintenance. Conforms to profile 3.0.




HART® - LD301

FOUNDATION™ fieldbus - LD302

PROFIBUS PA-LD303

Functional Specifications

Process Fluid	Liquid, gas or steam.
Output and Communication Protocol	HART®: Two-wire, 4-20 mA according to NAMUR NE43 specification, with superimposed digital communication (HART® Protocol). FOUNDATION™ fieldbus and PROFIBUS PA: Digital only. Complies with IEC 61158-2:2000 (H1): 31.25 kbit/s voltage mode, bus powered.
Power Supply / Current Consumption	HART®: 12 to 45 Vdc. Transient Suppressor Vmax = 65 Vp; Differential mode - bi-directional; Low current leak and capacitance; meets the standards: IEEE61000-4-4 and IEEE61000-4-5; Less than 5 ns response time. Foundation™ fieldbus and PROFIBUS PA: Bus powered: 9 to 32 Vdc. Quiescent current consumption: 12 mA.
Indicator	4½-digit numerical and 5-character alphanumerical LCD indicator (optional).
Hazardous Area Certifications	HART®, FOUNDATION™ fieldbus and PROFIBUS PA: Intrinsically Safe (FM, CSA, NEMKO, EXAM, CEPEL, NEPSI), explosion proof (FM, CSA, NEMKO, CEPEL, NEPSI), dust ignition proof (FM) and non-incendive (FM). FOUNDATION™ fieldbus and PROFIBUS PA: FISCO Field Device Ex ia IIC T4
	FNICO Field Device Ex n1 IIC T4 Authorized representative in European Community
European Directive Information	Smar Gmbh-Rheingaustrasse 9-55545 Bad Kreuzanach PED Directive (97/23/EC) - Pressure Equipment Directive This product is in compliance with the directive and it was designed and manufactured in accordance with sound engineering practice using several standards from ANSI, ASTM, DIN and JIS. EMC Directive (2004/108/EC) - Eletromagnetic Compatibility The EMC test was performed according to IEC standard: IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-6-4:2006, IEC61000-6-2:2005. For use in environment only. Keep the shield insulated at the instrument side, connecting the other one to the ground if necessary to use shielded cable. ATEX Directive (94/9/EC) - Equipment and protective systems intended for use in potentially explosive atmospheres This product was certified according European Standards at NEMKO and EXAM (old DMT). The certified body for manufacturing quality assessment is EXAM (number 0158). LVD Directive 2006/95/EC - Electrical Equipment designed for use within certain voltage limits According the LVD directive Annex II the equipment under ATEX "Electrical equipment for use in an explosive atmosphere" directive are excluded from scope from this directive. The EC declarations of conformity for all applicable European directives for this product can be found at www.smar.com.
Zero and Span Adjustments	Noninteractive, via digital communication or local adjustment.
Failure Alarm (Diagnostics)	Detailed diagnostics through communication for all protocols. HART®: In case of sensor or circuit failure, the self diagnostics drives the output to 3.6 or 21.0 mA, according to the user's choice and NAMUR NE43 specification. FOUNDATION™ fieldbus and PROFIBUS PA: For sensor circuit failures, events are generated and status is sent to link outputs. Detailed diagnostics are available in the contained parameters.

Temperature Limits	Ambient: -40 a 85 °C (-40 a 185 °F) Process: -40 a 100 °C (-40 a 212 °F) (Silicone Oil) -40 a 85 °C (-40 a 185 °F) (Inert Halocarbon Oil) 0 a 85 °C (32 a 185 °F) (Inert Fluorolube Oil) -20 a 85 °C (-4 a 185 °F) (Inert Krytox Oil and Fomblim Oil) -25 a 100 °C (-13 a 212 °F) (Viton O'Ring) -40 a 150 °C (-40 a 302 °F) Storage: -40 a 100 °C (-40 a 212 °F) Digital Display: -20 a 80 °C (-4 a 176 °F) -40 a 85 °C (-40 a 185 °F) (without damage)								
Turn-on Time	HART®: Performs within specifications in less than 5 seconds after power is applied to the transmitter. Foundation™ fieldbus and PROFIBUS PA: Performs within specifications in less than 10 seconds after power is applied to the transmitter.								
Configuration	HART®: By digital communication (HART® protocol) using the configuration software CONF401, DDCON100 (for windows), HPC301 or HPC401 (for Palm). It can also be configured using DD and FDT/DTM tools, and can be partially configured through local adjustment. Foundation™ fieldbus and PROFIBUS PA: Basic configuration may be done using the local adjustment magnetic tool if device is fitted with display. Complete configuration is possible using configuration tools.								
Volumetric Displacement	Less than 0.15 cm³ (0.01 in³)								
	From 3.45 kPa abs. (0.5 psia)* to: 70 psi (5 bar) for range 0								

70 psi (5 bar) for range 0 1200 psi (80 bar) for range 1

2300 psi (160 bar) for ranges 2, 3 and 4

4600 psi (320 bar) for models H2 and H5

5800 psi (400 bar) for range 5

7500 psi (520 bar) for range 6

* except the LD301A model

Flange Test Pressure (Busrt Pressure): 68.95 MPa (10,000 psi)

Overpressures above will not damage the transmitter, but a new calibration may be necessary.

Overpressure and Static Pressure Limits (MWP – Maximum Working Pressure)

WARNING

It is described here only the maximum pressures of the materials referenced in each rule, it can not be manufactured on request.

Temperatures above 150 °C are not available in standard models.

PRESSURES TABLE FOR SEAL AND LEVEL FLANGES DIN EN 1092-1 2008 STANDARD

			Maximum Temperature Allowed										
Material Group	Pressure Class	RT	100	150	200	250	300	350					
Oroup	Oldos		Max	imum Pr	essure <i>F</i>	Allowed ((bar)						
	PN 16	16	13.7	12.3	11.2	10.4	9,6	9.2					
	PN 25	25	21.5	19.2	17.5	16.3	15.1	14.4					
10E0	PN 40	40	34.4	30.8	28	26	24.1	23					
AISI 304/304L	PN 63	63	63	57.3	53.1	50.1	46.8	45					
304/304L	PN 100	100	86.1	77.1	70	65.2	60.4	57.6					
	PN 160	160	137.9	123.4	112	104.3	96.7	92.1					
	PN 250	250	215.4	192.8	175	163	151.1	144					

		Maximum Temperature Allowed										
Material Group	Pressure Class	RT	100	150	200	250	300	350				
Group	Olass		Maximum Pressure Allowed (bar)									
	PN 16	16	16	14.5	13.4	12.7	11.8	11.4				
	PN 25	25	25	22.7	21	19.8	18.5	17.8				
14E0	PN 40	40	40	36.3	33.7	31.8	29.7	28.5				
AISI 316/316L	PN 63	63	63	57.3	53.1	50.1	46.8	45				
010/010L	PN 100	100	100	90.9	84.2	79.5	74.2	71.4				
	PN 160	160	160	145.5	134.8	127.2	118.8	114.2				
	PN 250	250	250	227.3	210.7	198.8	185.7	178.5				

		Maximum Temperature Allowed									
Material Group	Pressure Class	RT	100	150	200	250	300	350			
Group	01000	Maximum Pressure Allowed (bar)									
4050	PN 16	16	16	16	16	16	-	-			
16E0 1.4410	PN 25	25	25	25	25	25	-	-			
Super	PN 40	40	40	40	40	40	-	-			
Duplex	PN 63	63	63	63	63	63	-	-			
1.4462	PN 100	100	100	100	100	100	-	-			
Duplex	PN 160	160	160	160	160	160	-	-			
	PN 250	250	250	250	250	250	-	-			

Overpressure and Static Pressure Limits (MWP -Maximum Working Pressure) (continuation)

PRESSURES TABLE FOR SEAL AND LEVEL FLANGES ASME B16.5 2009 STANDARD

		Maximum Temperature Allowed											
Material Group	Pressure Class	-29 to 38	50	100	150	200	250	300	325	350			
Croup		Maximum Pressure Allowed (bar)											
	150	20	19.5	17.7	15.8	13.8	12.1	10.2	9.3	8.4			
	300	51.7	51.7	51.5	50.3	48.3	46.3	42.9	41.4	40.3			
Hastellov	400	68.9	68.9	68.7	66.8	64.5	61.7	57	55	53.6			
C276	600	103.4	103.4	103	100.3	96.7	92.7	85.7	82.6	80.4			
	900	155.1	155.1	154.6	150.6	145	139	128.6	124	120.7			
	1500	258.6	258.6	257.6	250.8	241.7	231.8	214.4	206.6	201.1			
	2500	430.9	430.9	429.4	418.2	402.8	386.2	357.1	344.3	335.3			

			Maximum Temperature Allowed											
Material Group	Pressure Class	-29 to 38	50	100	150	200	250	300	325	350				
Croup	0.000	Maximum Pressure Allowed (bar)												
	150	20	19.5	17.7	15.8	13.8	12.1	10.2	9.3	8.4				
S31803	300	51.7	51.7	50.7	45.9	42.7	40.5	38.9	38.2	37.6				
Duplex	400	68.9	68.9	67.5	61.2	56.9	53.9	51.8	50.9	50.2				
S32750 Super	600	103.4	103.4	101.3	91.9	85.3	80.9	77.7	76.3	75.3				
Duplex	900	155.1	155.1	152	137.8	128	121.4	116.6	114.5	112.9				
	1500	258.6	258.6	253.3	229.6	213.3	202.3	194.3	190.8	188.2				
	2500	430.9	430.9	422.2	382.7	355.4	337.2	323.8	318	313.7				

			Maximum Temperature Allowed											
Material Group	Pressure Class	-29 to 38	50	100	150	200	250	300	325	350				
Oloup	01400			Maxi	mum Pre	essure A	llowed (b	oar)						
	150	15.9	15.3	13.3	12	11.2	10.5	10	9.3	8.4				
	300	41.4	40	34.8	31.4	29.2	27.5	26.1	25.5	25.1				
41010401	400	55.2	53.4	46.4	41.9	38.9	36.6	34.8	34	33.4				
AISI316L	600	82.7	80	69.6	62.8	58.3	54.9	52.1	51	50.1				
	900	124.1	120.1	104.4	94.2	87.5	82.4	78.2	76.4	75.2				
	1500	206.8	200.1	173.9	157	145.8	137.3	130.3	127.4	125.4				
	2500	344.7	333.5	289.9	261.6	243	228.9	217.2	212.3	208.9				

Overpressure and Static Pressure Limits (MWP -Maximum Working Pressure) (continuation)

	_	Maximum Temperature Allowed											
Material Group	Pressure Class	-29 to 38	50	100	150	200	250	300	325	350			
Стопр	01400	Maximum Pressure Allowed (bar)											
	150	19	18.4	16.2	14.8	13.7	12.1	10.2	9.3	8.4			
	300	49.6	48.1	42.2	38.5	35.7	33.4	31.6	30.9	30.3			
	400	66.2	64.2	56.3	51.3	47.6	44.5	42.2	41.2	40.4			
AISI316	600	99.3	96.2	84.4	77	71.3	66.8	63.2	61.8	60.7			
	900	148.9	144.3	126.6	115.5	107	100.1	94.9	92.7	91			
	1500	248.2	240.6	211	192.5	178.3	166.9	158.1	154.4	151.6			
	2500	413.7	400.9	351.6	320.8	297.2	278.1	263.5	257.4	252.7			

		Maximum Temperature Allowed											
Material Group	Pressure Class	-29 to 38	50	100	150	200	250	300	325	350			
Огоир		Maximum Pressure Allowed (bar)											
	150	19	18.3	15.7	14.2	13.2	12.1	10.2	9.3	8.4			
	300	49.6	47.8	40.9	37	34.5	32.5	30.9	30.2	29.6			
AISI304	600	99.3	95.6	81.7	74	69	65	61.8	60.4	59.3			
	1500	248.2	239.1	204.3	185	172.4	162.4	154.6	151.1	148.1			
	2500	413.7	398.5	340.4	308.4	287.3	270.7	257.6	251.9	246.9			

Humidity Limits

0 to 100% RH (Relative Humidity)

Damping Adjustment

User configurable from 0 to 128 seconds (via digital communication).

Performance Specifications

Reference Conditions	Vdc, fill fluid in Silicone Oil, O'Ring in Buna-N, isolating diaphragms in 316L SST and digital trim equal to lower and upper range values.
Accuracy	For range 0, and differential or gage models and 316L SST or hastelloy diaphragm with silicon or halocarbon filling fluid: 0.2 URL span URL: ± 0.1% of span 0.05 URL span < 0.2 URL: ± [0.025+0.015 URL/span]% of span For ranges 1, 2, 3, 4, 5 or 6, differential or gage models, and 316L SST or hastelloy diaphragm with silicon or halocarbon filling fluid: 0.1 URL span URL: ± 0.075% of span 0.025 URL span < 0.1 URL: ± [0.0375+0.00375.URL/span]% of span 0.0083 URL span < 0.025 URL: ± [0.0015+0.00465.URL/span]% of span

Accuracy (continuation)	For ranges 2 to 6 and absolute model. For tantalum or monel diaphragm. For fluorolube filling fluid: 0.1 URL span URL: ± 0.1% of span 0.025 URL span < 0.1 URL: ± 0.05[1+0.1 URL/span]% of span 0.0083 URL span < 0.025 URL: ± [0.01+0.006 URL/span]% of span For range 1 and absolute model: ± 0.2% of span For ranges 2, 3 or 4 and level model and 316L SST diaphragm with silicon or halocarbon filling fluid with maximum pressure matching the flange pressure class: 0.1 URL span URL: ± 0.075% of span 0.025 URL span < 0.1 URL: ± [0.0375+0.00375.URL/span]% of span 0.0083 URL span < 0.025 URL: ± [0.0015+0.00465.URL/span]% of span Linearity effects, hysterese and repeatability are included.
Stability	For ranges 2, 3, 4, 5 and 6: ± 0.15% of URL for 5 years at 20 °C temperature change and up to 7 MPa (1000 psi) of static pressure For ranges 0 and 1: ± 0.2% of URL for 12 months at 20 °C temperature change and up to 100 kPa (1 bar) of static pressure For Level transmitters: ± 0.2% of URL for 12 months at 20 °C temperature change
Temperature Effect	For ranges 2, 3, 4, 5 and 6: 0.2 URL span URL: ± [0.02% URL + 0.06% span] per 20 °C (68 °F) 0.0085 URL span < 0.2 URL: ± [0.023% URL + 0.045% span] per 20 °C (68 °F) For range 1: 0.2 URL span URL: ± [0.08% URL + 0.05% span] per 20 °C (68 °F) 0.025 URL span < 0.2 URL: ± [0.06% URL + 0.15% span] per 20 °C (68 °F) For range 0: 0.2 URL span URL: ± [0.15% URL + 0.05% span] per 20 °C (68 °F) 0.05 URL span < 0.2 URL: ± [0.15% URL + 0.3% span] per 20 °C (68 °F) For LD300L: 6 mmH ₂ O per 20 °C for 4" and DN100 17 mmH ₂ O per 20 °C for 3" and DN80 Consult for other flange dimensions and fill fluid.
Static Pressure Effect	Zero error: For ranges 2, 3, 4, 5 and 6: \pm 0.033% URL per 7 MPa (1000 psi) For range 1: \pm 0.05% URL per 1.7 MPa (250 psi) For range 0: \pm 0.1% URL per 0.5 MPa (5 bar) For Level transmitters: \pm 0.1% URL per 3.5 MPa (500 psi) The zero error is a systematic error that can be eliminated by calibrating at the operating static pressure. Span error: For ranges 2, 3, 4, 5 and 6: correctable to \pm 0.2% of reading per 7 MPa (1000 psi) For range 1 and level transmitters: correctable to \pm 0.2% of reading per 3.5 MPa (500 psi) For range 0: correctable to \pm 0.2% of reading per 0.5 MPa (5 bar)
Power Supply Effect	± 0.005% of calibrated span per volt.
Mounting Position Effect	Zero shift of up to 250 Pa (1 inH ₂ O) which can be calibrated out. No span effect.
Electromagnetic Interference Effect	Approved according to IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-6-4:2006, IEC61000-6-2:2005.

Physical Specifications

Electrical Connection	½ - 14 NPT ¾ - 14 NPT (with 316 SST adapter for 1/2 - 14 NPT) M20 X 1.5 ¾ - 14 BSP (with 316 SST adapter for 1/2 - 14 NPT) PG 13.5 DIN ½ - 14 BSP (with 316 SST adapter for 1/2 - 14 NPT)
Process Connection	 ¼ - 18 NPT or ½ -14 NPT (with adapter). For L models see Ordering Code. See Ordering Code for more options.
Wetted Parts	Isolating Diaphragms: 316L SST, Hastelloy C276, Monel 400 or Tantalum. Drain/Vent Valves and Plug: 316 SST, Hastelloy C276 or Monel 400. Flanges: Plated Carbon Steel, 316 SST CF8M (ASTM - A351), Hastelloy C276 - CW-12MW, (ASTM - A494) or Monel 400. Wetted O-Rings (For Flanges and Adapters): Buna-N, Viton™, PTFE or Ethylene-Propylene. The LD300 is available in NACE MR-01-75/ISO 15156 compliant materials.
	Electronic Housing: Injected aluminum with polyester painting, epoxy painting or 316 SST - CF8M (ASTM - A351) housing. Complies with NEMA 4X/6P, IP66 ou IP66W*, IP68 ou IP68W*. Note: *The IP66/68W sealing test (immersion) was performed at 1 bar for 24 hours. For any other situation, please consult Smar. IP66/68W tested for 200h to according NBR 8094 / ASTM B 117 standard.
Nonwetted Parts	Blank Flange: When flange adapter and Drain/Vent material is Carbon Steel, blank flange is in Carbon Steel, otherwise blank flange is in 316 SST CF8M (ASTM - A351). Level Flange (LD300L): 316L SST, 304 SST, Hastelloy C276 and Plated Carbon Steel. Fill Fluid: Silicone, Fluorolube, Krytox, Halocarbon 4.2 or Fomblim oils. Cover O'Ring: Buna-N Mounting Bracket: Plated Carbon Steel or 316 SST.
	Accessories (bolts, nuts, washers and U-clamps) in Carbon Steel or 316 SST. Flange Bolts and Nuts: Plated Carbon Steel, Grade 8 or 316 SST. For NACE applications: Carbon Steel ASTM A193 B7M. Identification Plate: 316 SST.
Mounting	 a) Flange mounted for Level models. b) Optional universal mounting bracket for surface or vertical/horizontal 2"-pipe (DN 50). c) Manifold Valve integrated to the transmitter. d) Directly on piping for closely coupled transmitter/orifice flange combinations.
Approximate Weights	3.15 kg (7 lb): all models, except L models.5.85 to 9.0 kg (13 lb to 20 lb): L models depending on the flanges, extension and materials.
Control Functions Characteristics (Optional)	HART® PID Control (PID) and Totalizer (TOT) FOUNDATION™ fieldbus Resource (RS), Transducer (TRD), Diagnostics Transducer Block (DIAG), Analog Input (AI), PID Control (PID), Advanced PID Control (APID), Arithmetic (ARTH), Integrator (INTG), Input Selector (ISEL), Signal Characterizer (CHAR), Analog Alarm (AALM), Timer and Logic (TIME), Lead Lag (LLAG), Output Signal Selector and Dynamic Limiter (OSDL), Constant (CT) and Density (DENS). PROFIBUS PA Physical Block (PHY), Transducer (TRD), Analog Input (AI) and Totalizer (TOT)

High Performance option (code L1) is available under the following conditions only:

Application	Differential Gage
Range	D2:
Diaphragm Material	316L SST Hastelloy C276
Fill Fluid	Silicone

Performance Specifications (Code L1)

Reference Conditions	Span starting at zero, temperature of 25 °C (77 °F), atmospheric pressure, power supply of 24 Vdc, silicone oil fill fluid, isolating diaphragms in 316L SST and digital trim equal to lower and upper range values.
Accuracy	For range 2: 0.2 URL span URL: ± 0.04% of span 0.05 URL span < 0.2 URL: ± [0.021667 + 0.003667 URL/span]% of span 0.0085 URL span < 0.05 URL: ± [0.0021 + 0.004645 URL/span]% of span For range 3 and 4: 0.1 URL span URL: ± 0.05% of span 0.05 URL span < 0.1 URL: ± [0.005 + 0.0045 URL/span]% of span 0.0085 URL span < 0.05 URL: ± [0.0021 + 0.004645 URL/span]% of span
Stability	For range 2: ± 0.05% of URL for 6 months For range 3: ± 0.075% of URL for 12 months For range 4: ± 0.1% of URL for 24 months ± 0.2% of URL for 12 years, at 20 °C temperature change and up to 7 MPa (1000 psi) {70 bar} of static pressure, environment free of hydrogen migration.
Temperature Effect	From -10 °C to 50 °C, protected from direct sun radiation: 0.2 URL span URL: ± [0.018% URL + 0.012% span] per 20 °C (36 °F) 0.0085 URL span < 0.2 URL: ± [0.02% URL + 0.002% span] per 20 °C (36 °F)
Static Pressure Effect	Zero error: ± 0.025% URL per 7 MPa (1000 psi) The zero error is a systematic error that can be eliminated by calibrating at the operating static pressure. Span error: Correctable to ± 0.2% of reading per 7 MPa (1000 psi).

Hastelloy is a trademark of the Cabot Corp.

Fluorolube is a trademark of Hooker Chemical Corp.

Foundation is a trademark of Fieldbus Foundation. Monel is a trademark of International Nickel Co.

Hallocarbon is a trademark of Hallocarbon.

Viton and Teflon are trademarks of E. I. DuPont de Nemours & Co. HART® is a trademark of HART® Communication Foundation.

Smar Pressure Transmitters are protected by US patent number 6,433,791

	IBUS PA			_					_						
COD.	Туре			Range	Limits	Min. Span	Unit		Range	Limits	Min. Span	Unit			
D0 D1 D2 D3 D4	Differential and Differential	d Flow d Flow d Flow		-1 -5 -50 -250 -2500	1 5 50 250 2500	0.05 0.13 0.42 2.08 20.83	kPa kPa kPa kPa kPa		-4 -20 -200 -36 -360	20 200 36 360	0.2 0.5 1.67 0.3 3	inH ₂ O inH ₂ O inH ₂ O psi psi			
M0 M1 M2 M3 M4 M5 M6	Gage Gage Gage Gage Gage Gage			-1 -5 -50 -100 -100 -0.1 -0.1	1 5 50 250 2500 25 40	0.05 0.13 0.42 2.08 20.83 0.21 0.33	kPa kPa kPa kPa kPa MPa MPa		-4 -20 -200 - 14.50 - 14.50 - 14.50	4 20 200 36 360 3600 5800	0.2 0.5 1.67 0.3 3 30 48.3	inH2O inH2O inH2O psi psi psi psi	up to		an be extended d 1.2 URL with of accuracy.
A1 A2 A3 A4 A5 A6	Absolute Absolute Absolute Absolute Absolute			0 0 0 0 0	5 50 250 2500 25 40	2.00 2.50 5.00 20.83 0.21 0.33	kPa kPa kPa kPa MPa MPa		0 0 0 0 0	37 7.2 36 360 3600 5800	14.8 0.36 0.73 3 30 48.3	mmHga psia psia psia psia psia			
H2 H3 H4 H5	Differential - H Differential - H Differential - H	ligh Static Pressul ligh Static Pressul ligh Static Pressul ligh Static Pressul agm Material and	re re re	-50 -250 -2500 -25	50 250 2500 25	0.42 2.08 20.83 0.21	kPa kPa kPa MPa		- 200 - 36 - 360 - 3600	200 36 360 3600	1.67 0.3 3 30	inH ₂ O psi psi psi			
	4 Hastelloy 5 Monel 40 7 Tantalum 8 Tantalum COD. C F H	y C276 Silicone (y C276 Inert Fluo 00 Silicone (n Silicone (n Inert Fluo Flange(s), Adapt Plated CS (Drain/ Monel 400 Plated Hastelloy C276 (C	rolube Oil Dil (1)(9) rolube Oil Dil (1)(3)(9) Dil (3)(9) rolube Oil er(s) and I Vent In Sta Bar (for HR CW-12MW,	(1)(2)(15 (2)(3)(15 Drain/Ve inless St = applica ASTM -	A D E G I K Mt Valve eel) (16) tions)) M N I) P	Monel 40 316 SST 316 SST	For Ine Ine Ine Sili Ine Sili - CF8M	1 (ASTM A	Òil (3)(1 Oil (1)(3 Oil (3)(1 Oil (1)(3 A351) (D	5) Q)(15) R 5) S U)(15) Orain/Vent In	Monel 40 316 L SS Hastelloy Tantalum 316 L SS Hastelloy VDF (Kyr	C276 T O.P. (C276) (1) (ar) Insert (5) (Inert Haloc Inert Haloc Inert Haloc Silicone Oi	Oil (1) (3) (15) arbon 4.2 Oil (2) (3) (arbon 4.2 Oil (2) (3) (arbon 4.2 Oil (2) (3) (arbon 4.2 Oil (2) (3) (1 (9) Note: O.P. = Over-La
	C	316 SST - CF8M (OD. Wetted O'F	Rings Mate	erials		0	316 SST	- CF8N	/I (Drain/V		plug in Mon	el) Nace	Standard		
		Without O'F B Buna-N	•	1		ylene - Prop rez (12)	ylene (12)		T V	Teflor Viton			Note: O'Rings with Remote	s are not availab Seals.	le on the sides
		A Drair COD. 0	out Drain/V	ent oosite to licator dicator) 1 With E	U To	dicator		Drain/ver	nt valve not	available on the	sides with remo	
			1 1/2 - 2 CF1/3 Rem 5 1/2 - 6 Low 7 Plug 8 Low	14 NPT 6 (Withoute Sea 14 NPT Volume for Rem Volume tote Seal	(With A ut Adapt (With P Axial wi Flange ote Sea Flange - (Low Vo	er) Plug) (3) (8) th PVDF Ins			F Hig F Hig H Hig Q 8 n T 1/2 U Low V Ma	gh Side: gh Side: gh Side: nm hole – 14 BS w Volum nifold Va	Remote Sea 1/2 – 14 NP Remote Sea	al (With P T and Lov al (Low V ad (Acco apter) Level W	rlug) and Low solde: Remoto Blume Flange) rding to DIN19 elded	Side - 1/2 - 14 e Seal (Low \ and Low Sid	Plug) (10) (12) I NPT (10) (12) Volume Flange) (10)(e: 1/2 - 14 NPT (10)(
			0 1 2 3	1/2 - 3/4 - 3/4 -	14 NPT 14 NPT 14 BSP 14 BSP	(17)(18)(19) (with 316 St (with 316 St (with 316 St iis code as '	ST adapter ST adapter ST adapter	r for 1/2 r for 1/2	- 14 NPT - 14 NPT) (6)) (6)		В	M20 X 1.5 (1 PG 13.5 DIN User's specif	(17)(18)	
	H j				COD.	Mounting	Bracket fo	or 2" Pi	pe or Sur	face Mo	ounting				
					1 2 5	Without brace Carbon stee 316 SST brace L type, carbon L type, 316	el bracket a acket and a on steel br	accesso acket a	ries nd access	ories (1	9	L type Flat, 3	e, carbon steel	bracket. Acceet and 316 S	s: 316 SST (16) essories: 316 SST (1) ST accessories
 						COD. Con	tinues ne	xt page							
	1 1 -	B U 1	0 - 0	1	2 /	*		4	TYPICAL N	MODEL N	UMBER				
1 - D2		the state of the state of	1 1												

- Notes:

 (1) Meets NACE MR-01-75/ISO 15156 recommendations.
 (2) Not available for absolute models nor for vacuum applications.
 (3) Not available for range 0 and 1.
 (4) Not recommended for vacuum service.
 (5) Maximum pressure 24 bar.
 (6) Options not certified for use in hazardous locations.
 (7) Drain/Vent not applicable.
 (8) For remote seal only 316 SST CF8M (ASTM A351) flange is available 7/16 UNF.
 (9) Silicone Oil is not recommended for oxygen (O₂) or Chlorine service.
 (10) Only available for differential pressure transmitters.
 (11) O-ring should be Viton or Kalrez.

- (12) Not available for range 0.
 (13) Available for differential pressure transmitters, range 4, 7/16 UNF or M10 x 1.5 thread and for high static pressure transmitters , range 4, 7/16 UNF thread.
 (14) Only available for flange with PVDF (Kynar) insert
 (15) Inert Fluid: Safe Oxygen Service.
 (16) Not applicable for saline atmosphere.
 (17) This adapter has certified for use in Explosion Proof (CEPEL).
 (18) This adapter has certified for use in Explosion Proof (NEPSI, NEMKO, EXAM).
 (19) This adapter has certified for use in Explosion Proof (CSA).

								AND	HIGH	STA	TIC	PRESSURE TRANSMITTERS				
	COD.	Flang	es Bo	lts and	l Nuts	Mater	ial									
	A0 A1	Plate 316 S		on Ste	el (Def	ault) (3)			\2 \5		bon Steel (ASTM A193 B7M) (stelloy C276	1) (8)	A		Super Duplex Stainless Steel Nace MR0175 / MR0103 Compliant
		COD.	Flang	ge Thr	ead for	Fixin	g Aces	sories	(Adap	pter	s, Ma	anifolds, Mounting Brackets,	etc)			
		D0 D1	7/16 M10		Default)		D2	M1	2 X	1.75					
			COD.	Outp	ut Sig	nal (O	nly ava	ailable	for LD	301)					
			G0 G1		0 mA (I 0 mA (4					C	33	NAMUR NE43 Extended 4 to	20 mA	(Burnout 3.	.55 a	nd 22.8 mA)
				COD.	Hous	ing N	aterial	(10) (1	1)							
				H0 H1 H2	316	SST -	CF8M	t) (IP/T (ASTM ine Atm	- A351			PE) H3 H4 VTYPEX) (9)				Atmospheres (IPW/TYPEX) (9) Free (IPW/TYPEX) (9)
	1	1		1	COD.	Tag	Plate									
i					J0	With	tag, w	hen sp	ecified	(De	fault) J1 Blar	nk		Jź	2 User's Specification
					1	COD	PID	Config	uratio	n - (Only	available for LD301)				
				ij		M0 M1		PID (E out PIE)						
I I					- 1		COD.	LCD	1 Indic	catio	n (C	only available for LD301)				
				į			Y0 Y1 Y2	LCD	1: Curi	rent	- Ĭ (n	(Default) nA) ngineering Unit)	Y3 YU			ature (Engineering Unit) Specification (4)
					i.		1				`	tion (Only available for LD30	1)			
į					į			Y0 Y4 Y5	LCD	2: C	urre	ntage (Default) nt - I (mA) ure (Engineering Unit)				mperature (Engineering Unit) er's Specification (4)
		i	i	1				T				fication Plate				
				 		Ì			11 12 13 14 15	N C E	EMK SA: XAN	P, IS, NI, DI (O: Ex-d, Ex-ia (7) XP, IS, NI, DI (DTM): Ex-ia, NEMKO: Ex-d L: Ex-d, Ex-ia		17 [18 (1D)	Dekra 0 to 2 NEPS	out Certification a/EXAM: Group I, M1 Ex-ia 20 mA: LD301 (2) SI: Ex-ia, Ex-d SI: Ex-ia (5)
i					i.			i.	- 1	CC	DD.	Painting				
				Ì				i		F	4	Gray Munsell N 6,5 Polyester Black Polyester White Epoxy Yellow Polyester		P9 Sa PC Sa	fety I	t Painting Blue Epoxy - Electrostatic Painting Blue Polyester - Electrostatic Painting Orange Epoxy Paint - Electrostatic Pair
i					i.											
1																
-D21I-BU10-012	/ A0	D0	G0	НО	Jo	MO	Y0	Y5	16	F	0	TYF	PICAL N	IODEL NUMB	ER	
2 2041 2142		D0		110	10				10	1 -						
2-D21I-BU10-02	/ A0	D0		H0	JO				16	T	0					
	100	1		100	100				1.0		1					

Optional Items

Burn-out (Only available for LD301)	BD - Down Scale (According to NAMUR NE43 specification) BU - Up Scale (According to NAMUR NE43 specification)
Special Applications	C1 - Degrease Cleaning (Oxygen or Chlorine Service) (5)
High Performance	L1- 0.04% accuracy (3)
Square Root Extraction (Only available for LD301D)	M3 - Configured with Square Root Extraction
Special Features	ZZ - User's specification

- (1) Meets NACE MR-01-75/ISO 15156 recommendations.
 (2) Without Explosion Proof or Intrinsic Safety approvals.
 (3) Only available for differential and gage pressure models.
 (4) Values limited to 4 1/2 digits; until limited to 5 characters.
 (5) Degrease cleaning not available for carbon steel flanges.
 (6) Only available for LD302 and LD303 models.
 (7) Only available for LD301.
 (8) Not applicable for saline atmosphere.

(9) IPW/TYPEX tested for 200 hours according to NBR 8094 / ASTM B 117 standard. (10) IPX8 tested in 10 meters of water column for 24 hours. (11) Ingress Protection:

Products	CEPEL	NEMKO / EXAM	FM	CSA	NEPSI
LD300	IP66/68/W	IP66/68/W	Type 4X/6P	Type 4X	IP67

Fou	INDA			dbu	s																										
PRO	OFIB	JS PA		nao	Lim	ite									Dango	Lim	ite														
COD.			Mir	۱.		áx.	M							N	/lin.	M	láx.	Min. S													
L2 L3 L4 L5			-2 -25	50 00	2	250 2500		2	2.08 0.83		kPa kPa				-36 -360	Max															
	1.35 1.25																														
	1 2 3 4 5	31 31 Ha Ha	6L S 6L S stell stell	ST ST oy C oy C 400	276	Silid Iner Silid Iner Silid	cone t Flu cone t Flu cone	Oil (oroli Oil (oroli Oil ((2) ube ((1) (2 ube ((1) (2	Dil (3) Dil (1) (26)		9 31 A Mo D 31 E Ha	6L SS onel 4 6L SS astelloy	T 00 T / C27	Fo Fo Ine 76 Ine	omblim Comblim Comblim Coert Kryto ert Kryto ert Kryto)il)il (1) x Oil (2 x Oil (1	26) I) (26)		M P Q R	Mone Mone 316L Haste	el 400 el 400 SST elloy (0 Gold 0 Gold		ted Silic ted Iner Iner Iner	cone O t Kryto t Haloo t Haloo	il (1) (i x Oil (carbor carbor	2) 1) (26) 4.2 Oil 4.2 Oil	(1) (2
	T	CC	D.	Fla	nge	, Ada	pter	anc	l Dra	in/Ve	ent V	/alves	s mate	rial (l	Low S	ide)															
		F	:	Plate Mon	ed C iel 40	S (Di	ated	Bar	(for F	∃F aμ	plica	ations	5))			M	Monel 316 SS	400 (1) ST – Cl) F8M (.	ASTM -	- A351)	(Drair						(4) (5)	
			C					-		eria	l (Lo			dono	Dran	ulana			_	To	flan					O'nin e		at avai	ا ماما	un Alba	
								angs							- Prop	ylerie	3												lable (on the	
					0	١	Vitho	out D	rain/	Vent				onnec	tion)																nmen
						С	OD.																								
							0					Con	nectio	n (I c			Vith D	igital ind	icator												
								0 1 2 3	1. 1. C	/4 - 1 /2 - 1 :F16 :emo	8 NF 4 NF (With te Se	PT (W PT (W hout A eal (W	/ithout /ithout \dapte Vith Pl	Adap Adap r) ug) (7	ter) ter)		4) (C)	7 8 9	Plug f Low \ Remo	for Re /olum ote Sea	mote S e Flang al (Low '	eal le - Wel Volume	ded Flange	e) (3) ((7)	٧	Without Flange)	t Conne	ection	Mounted	l with
		ľ		i	i			9								(3) (4) (6)		1/2 14	4 BSP	(VVITI) F	Adapter)								
				i	i		1											r for 1/	14 ND	T) (2)	4)/34)										
				i	i		1			2	3/4	4 – 14	4 BSP	(with	316 S	ST a	daptei	r for ½ -	14 NP	PT) (9)											
		i		i	į		1			Ì								.0. /1		.,(•,											
		i		i	i		1				1																				
													U 1 V 1 W 1 O 1 P 1 Q 1 9 2	150; 300; 600; 1/2" 1 1/2" 3 1/2" 6	# (ANS # (ANS 150 # (800 # (800 # (SI B1 SI B1 SI B1 ANS ANS ANS	6.5) (3 6.5) (3 6.5) (3 I B16.9 I B16.9 I B16.9	33) 33) 33) 5) 5)	1 3" 2 3" C 3" N 3" 3 4" 4 4"	150 # 300 # 600 # 600 # 150 # 300 #	(ANSIII (ANSIII (ANSIII (ANSIII (ANSIII	B16.5) B16.5) B16.5) B16.5 R B16.5) B16.5)	RTJ)	R 6 7 8 S	DN DN DN DN DN	40 Pi 50 Pi 80 Pi 100 P 100 P 40A	N 10/40 N 10/40 N 10/40 PN 10/16 PN 25/40 20K (21)	K G L H	JIS 50A JIS 80A JIS 80A JIS 100A JIS 100A	20k 10k 20k 10k 10k
i	i	i		ĺ			i				ĺ		_		•							,					·	_			
i	i	i		Ĺ			i				i								ge)	3	Hastel 304 S	lloy C27 ST (Slip	76 (Inte	egral ange	Flange	e)	5 6	316 S Carbo	ST (SI n Stee	ip-on Fla el (Slip-o	inge) n Fla
i	i	ĺ		Ì			i				ĺ								•												
i	j						İ			ļ																		n			
i							Ĺ											•	•			•		• /	F (4.0)			Вт	-antalı	na svitla Ta	flan
İ							<u> </u> 						 			1	31 Ha Mo	6L SST astelloy Conel 400	/ 316 S 276 / 3 / 316 S	SST 316 SS SST	5 T 6 3 7 3	Titaniun 316L SS 316L SS	n / 316 ST with	SST Teflor	(10) n Linin		r 2"and 3	C F	lastelle 16LS	y with Te ainless S	eflon Steel
																		1 DC	200 S 704 S	ilicon	e Oil e Oil	i	N Nec	bee N	M20 Pr		ene Glyo	ol Oil	G	Slycerin +	Wate
															İ			CC	D.	Lowe	r Housi	ing Mat	terial								
							 												I St	tainles	ss Steel	l 316	g (12)			4	Duplex				(11)
i	i	i		i	i		i	ĺ			i					1								C	Crofe	SI /EI	loviblo la	ood)	٠.	Ctoin	200 2
i	i			i	i		i	j			j					1				Т	Teflon ((PTFE)		С	Copp		ICVIDIC IC	Jau)		Gianni	J
i	i			i	İ		i	j			j				-	1					COD.	Conti	nues	Next	Page						
i	j	i		i	i		i	ĺ		İ	i		ĺ		i						1										
L2	1		-	В	u		1	0	-	0	1	-	1	2	2	1	1	1 1		1	*			•	т	YPICA	AL MODEI	L NUME	BER		
L2	1		-	В	U		1	0	-	0	1	-	1	2	2	1		1 1	-	 T/	*										

 $[\]ensuremath{^{\star}}$ Leave it blank when there are not optional items.

MODEL	FLANG	ED PRES	SURE T	RANSI	/IITTE	R							
	COD. F	langes B	olts and	Nuts N	lateria	ıl							
		Plated Carl 316 SST	bon Stee	el (Defau	ult) (22	2)				arbon Steel (ASTM A19 lastelloy C276	3 B7M) (1) (22)	
	С	OD. Flan	ge Thre	ead for I	Fixing	Acess	ories	(Adapt	ers, Ma	anifolds, Mounting Bra	ckets, etc	:)	
			UNF (D X 1.5	Default)			D2	M12	X 1.75				
l I		COD	. Flang	ge Facir	ng Fin	ish (18))						
		Q0 Q1 Q2	Flat F	ed Face Face - Fl Joint Fa	F Ì			ilable fo	r ANSI	standard flange) (17)		Q3 Q4	Tongue Face (11) Grooved Face (11)
			COD.	Outpu	ıt Sigr	nal (Onl	y ava	ilable f	or LD3	301)			
j	į		G0 G1			Default) -wire) (13)			G3 NAMUR NE43 E	xtended 4	to 20 mA	(Burnout 3.55 and 22.8 mA)
		1 !				_		(27) (28	•				
				H1	316 S	ST - CF	8M (A		A351) ((IP/TYPE) s (IPW/TYPEX) (23)	H3 H4	316 SST Aluminiu	for Saline Atmospheres (IPW/TYPEX) (2 m Copper Free (IPW/TYPEX) (23)
		l į	i	(COD.	Tag Pl	ate						
					J0	With ta	ag, w	hen spe	cified (Default)	J1	Blank	J2 User's Specification
		1 :						-		- (Only available for LI	D301)		
						M1	With	PID (De out PID					
		1 1			1					ation (Only available fo	r LD301)	3/0	004 T
							Y0 Y1 Y2	LCD1	: Curre	entage (Default) ent - I (mA) sure (Engineering Unit)			CD1: Temperature (Engineering Unit) CD1: User's Specification (14)
					i	i		COD.	LCD2	Indication (Only avail	able for L	D301)	
					į			Y0 Y4 Y5	LCD2	2: Percentage (Default) 2: Current - I (mA) 2: Pressure (Engineering	Unit)	Y6 YU	
							i		COD.	Identification Plate			
			İ						11 12 13 14 15	FM: XP, IS, NI, DI NEMKO: Ex-d, Ex-ia (3 CSA: XP, IS, NI, DI EXAM (DTM): Ex-ia, N CEPEL: Ex-d, Ex-ia	•	k-d	16 Without Certification 17 Dekra/EXAM: Group I, M1 Ex-ia 18 0 to 20 mA: LD301 (13) 1D NEPSI: Ex-ia, Ex-d 1E NEPSI: Ex-ia (5)
		T i						- i '		COD. Painting			
										P0 Gray Munsell N P3 Black Polyester White Epoxy P5 Yellow Polyester P8 Without Painting P9 Safety Blue Poly PC Safety Orange E	xy - Electr ester - Ele	ostatic Pa	Painting
 		1	i	 		i			i	l saidty stange E	, 27, Gill	. 2.0000	
										<u> </u>			
301-L21I-BU10-01-1221	11-T / A0 I	D0 Q0	G0	H0	J0	M0	Y0	Y5	16	P0	TYF	PICAL MOD	EL NUMBER
302-L21I-BU10-01-1221	 11-T	D0 Q0		H0	JO				16	P0			
	,												
303-L21I-BU10-01-1221	11-T / A0	D0 Q0		НО	JO				16	PO			

Optional Items

Burnout	BD - Down Scale (Acc	cordance to NAMUR NE43 specification)	BU -	Up Scale (Accordance to NAMUR NE43 specification)					
Special Procedures	C1 - Degrease Cleani	ng (Oxygen or Chlorine Service) (15)	C2 –	For Vacuum Application					
Special Features	ZZ – User's Specifica								
Gasket Connection	U1 - With Two Flush C	ection of 1/4" NPT (If supplied with housing Connections of 1/4" NPT at 180° Connections of 1/4" NPT at 90°)	U3 - With Two Connections of 1/2" NPT - 14 NPT at 180° (With Lid) U4 - Without gastek connection					
Insulator Kit	K0 – Without Kit	K1 – With Kit							
Diaphragm Thickness (16)	N0 - Default (25)	N1 - 0.1mm (11)							

Notes - LD300L:

- (1) Meets NACE MR 01 75/ISO 15156 recommendations.
 (2) Silicone oil not recommended for Oxygen (O2) or Chlorine Service.
 (3) Not applicable for vacuum service.
 (4) Drain/Vent is not applicable.
 (5) O-ring material must be of Viton or Kalrez.
 (6) Maximum pressure 24 bar.

- (6) Maximum pressure 24 bar.
 (7) For remote seal is only available flange in 316 stainless steel– CF8M (ASTM A351) (thread M12).
 (8) Fluorolube fills fluid not available with Monel diaphragm.
 (9) Options not certified for use in hazardous locations.
 (10) Attention, check corrosion rate for the process, tantalum plate 0.1 mm, AISI 316L extension 3 to 6mm.
 (11) Item by inquiry.
 (12) Supplied without Gasket.
 (13) Without certification for Explosion proof certification or Intrinsically safe.
 (14) Limited values to 4 1/2 digits; limited unit to 5 characters.
 (15) Degreaser's cleaning is not available for carbon steel flanges.
 (16) The insulator kit is applicable with Raised Face (HO) and Smooth Face (H1) with Gasket material. T(Teflon) and only for the following models: ANSI until #600, DIN until P40 and JIS until 40K; Insterial: I (reliably and only for the following models: - ANSI until #600 , BIN until JIS until 40K;
 - For models with extension the Gasket T (Teflon) it has special share.

 (17) Gasket for housing, available only in Stainless 316.

 (18) Finishing flange faces:
 ANSI B 16.5 / MSS-SP6:
 - Raised or Smoth Face with gooved lining: 3.2 to 6.3 µm Ra (125 a 250 µ° AA);
 Small or Large Face and Small or Large Group with smooth finishing and
- - Small or Large Tongue Face and Small or Large Groove with smooth finishing not exceeding: 3.2 μ m Rt (125 μ " AA); RTJ ANSI B 16.20 / MSS-SP6:

 - -Smooth finishing not exceeding: 1.6 μm Rt (63 μ" AA);

 - -Smooth finishing not exceeding: 1.6 μ m Rt (63 μ " AA); DIN EN-1092-1: Grooved finishing "B1" (PN 10 a PN40): 3.2 a 12.5 μ m Ra (125 a 500 μ " AA); Smooth finishing "B2" (PN 63 a PN100), "C" (Tongue) e "D" (Groove): 0.8 a 3.2 μ m Ra (32 a 125 μ " AA). Din 2501 (DIN 2526): Smooth finishing "E" (PN 160 a PN250): Rz = 16 (3.2 μ m Ra (125 μ " AA). Standard Jis B2201 Grooved finishing 3.2 a 6.3 μ m Ra (125 a 250 μ " AA).

- (19) Temperature application range: -40 to 150°C. (20) Applicable only for:

- Diaphragm Thickness of 0.05mm.
 Diameters/Capillary Length:
 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models
- (by inquiry).
 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.

- 4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.

 Faces: RF and FF.

 Temperature Limits:

 +10 to 100°C;
 +101 to 150°C (by inquiry).

 Not applicable for diaphragm thickness: N1 0.10mm.

 Not applicable for use with housing.

 (21) Not available for slip-on flange.

 (22) Not applicable for saline atmosphere.

 (23) IPW/TYPEX tested for 200 hours according to NBR 8094 / ASTM B 117 standard.

 (24) Certificate for use in explosive atmosphere (CEPEL).

 (25) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.

 (26) Inert Fluid: Safe Oxygen service.

 (27) IPX8 tested in 10 meters of water column for 24 hours.

 (28) Ingress Protection:

Products	CEPEL	NEMKO / EXAM	FM	CSA	NEPSI
LD300	IP66/68/W	IP66/68/W	Type 4X/6P	Type 4X	IP67

- (29) This adapter has certified for use in Explosion Proof (NEPSI, NEMKO, EXAM).
 (30) This adapter has certified for use in Explosion Proof (FM).
 (31) This adapter has certified for use in Explosion Proof (CSA).
 (32) Only available for LD301.
 (33) Not available for integral flange.

S2 S3 S4 S5	COD. 1 2 3 4 5	Min. -50 -250 -2500 -25000	Máx. 50 2500		in. Span 1.25	Unit.			Range I	imits	MI:- 0	na Haif					
S3 S4	1 2 3 4	-250 -2500 -25000 Diaphrag	250 2500		1.25				lin.	Máx.	Min. Spa						
	1 2 3 4	Diaphrag	25000		2.08 20.83 208.30	kPa kPa kPa kPa			-200 -36 -360 3625	200 36 360 3625	0.3	B psi ² B psi	UR		degradation of	ended up to 0.7 of accuracy. Th connection.	
	2 3 4	316L SST				id (Low :	Side)										
	7	316L SST Hastelloy 0 Hastelloy 0 Monel 400 Tantalum	Ine 2276 Sil 2276 Ine Sil	ert Flu icone ert Flu icone	Oil (1) (2	Dil (1) (3) (9 3 A N D 3 E H	antalun 16L SS Jonel 4 16L SS Jastello antalun	T 00 ST y C276	Fomblim O Fomblim O Inert Kryto	il (1) c Oil (19) c Oil (1) (19)	M P Q		Gold Plated Gold Plated 276) (2) il (1) (19) oon 4.2 Oil (oon 4.2 Oil (
		C Plat	ed CS (E telloy C2)rain/\ 276 (C	Vent in St	d Drain V ainless St W, ASTM A351)	eel) (18))	l (Low	1	N 316 S		(ASTM – A35 (ASTM – A35			y C276) (1) nar) insert (3) (4	I) (5)
1		COD	. Wett	ed O-	Ring Mat	terial (Lov								, , ,	` •	, ,,,	, , ,
	i	0 B	Withou Buna-l	N		E T	Teflor	ene - Pro n (Appro				V Viton K Kalrez				-Rings are not a s with remote s	
				Witho	out Drain	on (Low S	,	ection)		D U	Bottom Top	N	lote: For bette	r drain opera	tion, drain va	alves are strong s with remote so	lly recomme
			100	COD.	Local	Indicator		,									
	1			0	Without COD.	Process	Connec	ction (L	ow Sid		With Digita	Indicator					
					1 1/ 2 C 3 R 5 1/	'4 - 18 NP' '2 - 14 NP' F16 (Withous Sea '2 - 14 NP'	Γ (Witho out Adap al (With F Γ Axial w	ut Adapt oter) Plug) (7) rith PVDF	er) - Insert	(3) (4) (6	7 Pli 8 Lo 9 Re	ug for Remo w Volume F emote Seal (l	ange - 1/4 NPT te Seal ange - Welded Low Volume Fla Vith Adapter)		V Withou	olume Flange fo ut Connection (N e) ut Connection (A	Nounted with
						0 1/2 1 3/4 2 3/4	- 14 NF - 14 NF - 14 BS	SP (With	2 3)(24)(316 SS 316 SS	ST adapt ST adapt	er for 1/2 -	14 NPT) (20 14 NPT) (9) 14 NPT) (9)		A B Z	M20 X 1.5 PG 13.5 D User's Spe	IN (20)(23)	
i						COI 1		ro and S	•	-							
							8 9 H V U X W 4 B K 3 5 C L 2 S 7	Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread	ded DN4 ded DN4 ded DN4 ded DN4 ded DN4 ded IDF ded IDF ded IDF ded IDF ded RJT	40 DIN 1: 40 DIN 1: 50 DIN 1: 50 DIN 1: 50 DIN 1: 30 DIN 1: 2" - with 3" - with 3" - with 2" - with 2" - with 3" - with 3" - with 3" - with 3" - with 3" - with	1851 - with 1851 - with 1851 - with 1851 - with 1851 - with 1851 - with 1851 - with 1851 - with 2 wit / 316L 2 out ext. / 31 1 ext. / 316L 3 out ext. / 3: 1 ext. / 3: 2 i ext. / 3: 3 without ext.	ext. / 316L S out ext. / 316 ext. / 316L S out ext. / 316	SST (10) (11) L SST (10) SSST (10) (11) L SST (10) (11) (11) (11) (11) (11) (1) (1)	M Thread 1 Thread F Tri-Clai Q Tri-Clai D Tri-Clai N Tri-Clai P Tri-Clai I Tri-Clai J Tri-Clai R Tri-Clai	ed SMS 3" - ed SMS 3" - mp 1 1/2" - w mp 1 1/2" HF mp 2" - with e mp 2" - with e mp 2" HP - w mp 3" - with e mp 3" - with e mp 3" - with e mp 3" - With e mp 3" HP - w mp 3" HP - w mp 3" HP - w mp 3" HP - w specification	without ext. / 3' with ext. / 316L yithout ext. / 3' ext. / 316L SST ut ext. / 316L SST vithout ext. /	SST (10) (1 IGL SST (10) L SST (11) 316L SST (6 (11) SST (11) SST (8) (11) L SST (8) (1 (11) SST (11) SST (8) (11) L SST (8) (1
i	Ì	ii	i	1		i i		COD.			Material (F		11)			TIF - Tilgit Fit	zssui e
i			j	i		¦ i		Н		elloy C27	•	g,	I 316L	SST			
									S D F	DC 20 DC 70 Fluoro	0 – Silicone 4 – Silicone Iube MO-10	e Oil)	N Neob	erm 800 ee M20 (11) x 1506	H C E		Water (12)
										O	Wet O-ri Without O COD. T	-	T Teflon (I1) B	Buna-N	(11) V	Viton (1
								İ					oter in 316 SS	Т			
											0 2		t Tri-Clamp i-Clamp in 304 Continues n				
S2	1	I B	U	1	0	0 1	A		S	T	1 2	*		TYPICA	AL MODEL NU	MBER	
S2	1	I B	U	1	0	0 1	Α		S	T	1 2	*					

 $[\]ensuremath{^{\star}}$ Leave it blank when there are not optional items.

MODEL	PRE	SSURI	E SAN	TAR	TRAN	SMITT	ER											
	COD.	Flan	ges Bo	lts a	nd Nuts	Mater	ial											
	A0 A1	Plate 316		on St	teel (De	fault) (18)			A2 A5		on Steel (AS ⁻ elloy C276	TM A19	93 B7N	1) (1) (1	18)		
		COD.	Flan	ge Th	read fo	r Fixin	g Ace	ssories	(Adaj	oters, N	lanifold	ls, Mounting	Brack	cets, e	tc)			
		D0			(Defau	t)		D)2 M	12 X 1.	75							
	i.	D1	M10	X 1.5														
	- 1		COD.		put Sig	,	•	ailable	for LD	301)								
			G0 G1		20 mA 20 mA					G	3 NA	MUR NE43 I	Extende	ed 4 to	20 mA	A (Burn	out 3.55 and	d 22.8 mA)
				COL). Hou	sing N	lateria	(21) (2	22)									
				H0 H1 H2	316	SST - Ò	CF8M (- A351)	(IP/TY es (IPW	PE) //TYPE>	K) (19)						oheres (IPW/TYPEX) (19) PW/TYPEX) (19)
	i.	i	i.	- !	COD	. Tag	Plate											
					J0	With	tag, w	hen sp	ecified	(Defaul	lt)		J1	Blank			J2	User's Specification
						COD	PID	Config	uratio	n - (Onl	y availa	ble for LD3	01)					
				Ì		M0 M1		PID (E out PIE		١								
						-	COD	LCD	1 Indic	ation (Only av	ailable for L	D301)					
				į			Y0 Y1 Y2	LCD	1: Curi	ent - Ĭ (it) ring Unit)					emperature Jser's Specif	(Engineering Unit) fication (14)
						i		COD.	LCD	2 Indic	ation (C	only availabl	e for L	D301)				
								Y0 Y4 Y5	LCD	2: Curre	ent - Ĭ (n	(Default) nA) ngineering Ui	nit)					erature (Engineering Unit) s Specification (14)
				i			i	- 1	COD	Ident	ification	n Plate						
	<u> </u>	į	İ						11 12 13 14 15	NEM CSA: EXA	XP, IS,	d, Ex-ia (26) NI, DI): Ex-ia, NEM		x-d		16 17 18 ID IE		M: Group I, M1 Ex-ia : LD301 (13) :-ia, Ex-d
								- !		COD.	Painti	na						
										P0 P3 P4 P5	Black F White	Munsell N 6,5 Polyester Epoxy Polyester	Polyes	ster	P8 P9 PC PG	Safe Safe	ty Blue Poly	xy - Electrostatic Painting ester - Electrostatic Painting poxy Paint - Electrostatic Paint
301-S21I-BU10-01-AIST12 /	A0	D0	G0	НО	Jo	M0	Y0	Y5	16	P0			4	TYPICA	L MODE	EL NUM	BER	
) 302-S21I-BU10-01-AIST12 <mark>/</mark>	A0	D0	ı	HO	JO				16	P0	ı							
0303-S21I-BU10-01-AIST12 /	A0	D0	- 	HO	Jo	_			16	P0	ı							

Optional Itens

Burn-out	BD – Down Scale (Accordance to NAMUR NE43 specification) BU – Up Scale (Accordance to NAMUR NE43 specification)
Special Procedures	C1 – Degrease Cleaning (Oxygen or Chlorine Service) (15) C2 – For Vacuum Application C4 – Polishing of the wet parts according to 3A Certification (11) (12)
Special Features	ZZ – User's Specification
Diaphragm Thickness	N0 – Default N1 – 0.1mm (12)

Note - LD300S:

- (1) Meets NACE MR-01-75/ISO 15156 recommendations.
 (2) Silicone oil not recommended for Oxygen (O2) or Chlorine Service.
 (3) Not applicable for vacuum service.
 (4) Drain not applicable.
 (5) O-Ring material must be of Viton or Kalrez.
 (6) Maximum pressure 24 bar.
 (7) For remote seal is only available flange in 316 Stainless Steel CF8M (ASTMA351) (thread M12).
 (8) HP High Pressure.
 (9) Options not certified for use in hazardous locations.
 (10) Not available for Tri-clamp.

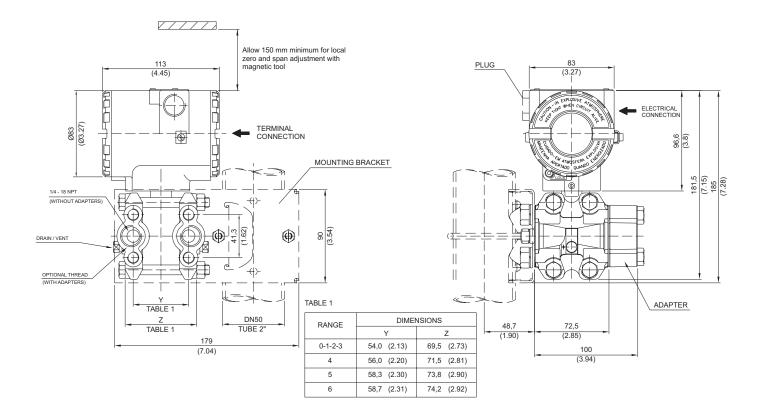
- (10) Not available for Tri-clamp.

 (11) Compliant with 3A-7403 standard for food and other applications where sanitary connections
 - are required:
 Neobee M2O Fill Fluid

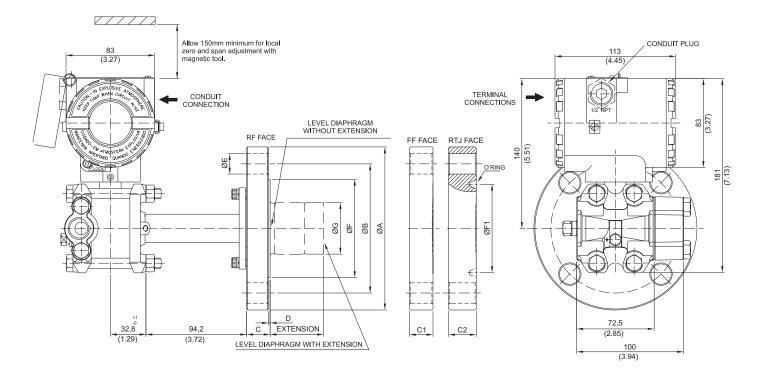
- Neobee M22 Fill Filling
 Finishing wet Face: 0,8 μm Ra (32 μ" AA)
 Wet O-Ring: Viton, Buna-N and Teflon
 (12) Item by inquiry.
 (13) Without certification for explosion proof or intrinsically safe.
 (14) Limited values to 4 1/2 digits; limited unit to 5 characters.

- (15) Degrease cleaning is not available for Carbon Steel Flanges.
 (16) Temperature application range: -40 to 140 °C and Tables 5 and 6 from the following page.
 (17) Inert Fluid: Safe Oxygen service.
 (18) Not applicable for saline atmosphere.

- (19) IPW/TYPEX tested for 200 hours according to NBR 8094 / ASTM B 117 standard.
 (20) Certificate for use in Explosion Proof (CEPEL).
 (21) IPX8 tested in 10 meters of water column for 24 hours.
 (22) Ingress Protection:

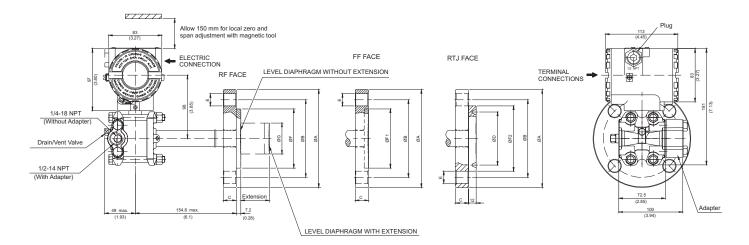

Products	CEPEL	NEMKO / EXAM	FM	CSA	NEPSI
LD300	IP66/68/W	IP66/68/W	Type 4X/6P	Type 4X	IP67

- (23) This adapter has certified for use in Explosion Proof (NEPSI, NEMKO, EXAM).
 (24) This adapter has certified for use in Explosion Proof (FM).
 (25) This adapter has certified for use in Explosion Proof (CSA).
 (26) Only available for LD301.



LD300 - Differential, Flow, Gage, Absolute and High Static Pressure Transmitters with Mounting Bracket

Flanged Pressure Transmitter with Integral Flange

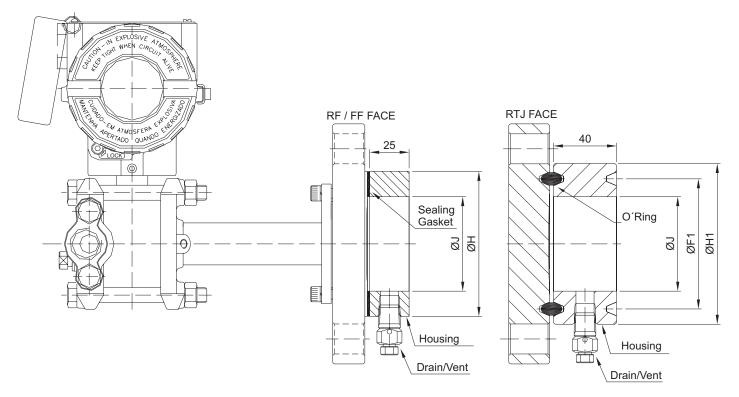

- Extension lenght (mm): 0, 50, 100, 150 or 200 Dimensions are mm (in)

ANSI-B 16.5 DIMENSIONS																						
DN	CLASS	P	4	Е	3	C	(RF)	C1	(FF)	C2 (F	RTJ)	D (RF)		E	F (I	RF)	F1 (RTJ)	RTJ O'RING		G	HOLES
	150	127	(5)	98.6	(3.88)	20	(0.78)	19	(0.75)	24.4	(0.96)	1.6	(0.06)	16	(0.63)	73.2	(2.88)	65.1 (2.56)	R19	40	(1.57)	4
1.1/2"	300	155.4	(6.12)	114.3	(4.5)	21	(0.83)	21	(0.83)	27.4	(1.07)	1.6	(0.06)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	600	155.4	(6.12)	114.3	(4.5)	29.3	(1.15)	29.3	(1.15)	29.3	(1.15)	6.4	(0.25)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	22	(0.87)	20	(0.78)	25.9	(1.02)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R22	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	22.8	(0.9)	22.8	(0.89)	30.8	(1.21)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	32.3	(1.27)	32.3	(1.27)	32.3	(1.27)	6.4	(0.25)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	24.4	(0.96)	24.4	(0.96)	30.7	(1.21)	1.6	(0.06)	19	(0.75)	127	(5)	114.3 (4.50)	R29	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	29	(1.14)	29	(1.14)	36.9	(1.45)	1.6	(0.06)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	38.7	(1.52)	38.7	(1.52)	40.2	(1.58)	6.4	(0.25)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	24.4	(0.96)	24.4	(0.96)	30.7	(1.21)	1.6	(0.06)	19	(0.75)	158	(6.22)	149.2 (5.87)	R36	96	(3.78)	8
4"	300	254	(10)	200	(7.87)	32.2	(1.27)	32.2	(1.27)	40.2	(1.58)	1.6	(0.06)	22	(0.87)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
	600	273	(10.75)	215.9	(8.5)	45	(1.77)	45	(1.77)	46.5	(1.83)	6.4	(0.25)	25	(1)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
	EN 1092-1 DIMENSIONS																					
DN	PN	Α		В		C ((RF)	C1	(FF)			[)	E		F (RF)				(G	HOLES
DN40	10/40	150	(5.9)	110	(4.33)	20	(0.78)	20	(0.78)			3	(0.12)	18	(0.71)	88	(3.46)			40	(1.57)	4
DN50	10/40	165	(6.5)	125	(4.92)	20	(0.78)	22	(0.86)			3	(0.12)	18	(0.71)	102	(4.01)			48	(1.89)	4
DN80	10/40	200	(7.87)	160	(6.3)	24	(0.95)	24	(0.94)		/	3	(0.12)	18	(0.71)	138	(5.43)	/	/	73	(2.87)	8
DN100	10/16	220	(8.67)	180	(7.08)	20	(0.78)					3	(0.12)	18	(0.71)	158	(6.22)			96	(3.78)	8
	25/40	235	(9.25)	190	(7.5)	24	(0.95)					3	(0.12)	22	(0.87)	162	(6.38)			96	(3.78)	8
										JIS E	3 2202	DIME	NSION	S								
DN	CLASS	Α		В			С					[)	ı	E	F (I	RF)			(G	HOLES
40A	20K	140	(5.5)	105	(4.13)	26	(1.02)					2	(0.08)	19	(0.75)	81	(3.2)			40	(1.57)	4
50A	10K	155	(6.1)	120	(4.72)	26	(1.02)					2	(0.08)	19	(0.75)	96	(3.78)			48	(1.89)	4
	40K	165	(6.5)	130	(5.12)	26	(1.02)					2	(0.08)	19	(0.75)	105	(4.13)			48	(1.89)	8
80A	10K	185	(7.28)	150	(5.9)	26	(1.02)					2	(0.08)	19	(0.75)	126	(4.96)			73	(2.87)	8
	20K	200	(7.87)	160	(6.3)	26	(1.02)	/				2	(0.08)	19	(0.75)	132	(5.2)			73	(2.87)	8
100A	10K	210	(8.27)	175	(6.89)	26	(1.02)					2	(0.08)	19	(0.75)	151	(5.95)			96	(3.78)	8

LD300L - Flanged Pressure Transmitter with Slip-on Flange

	ANSI-B 16.5 DIMENSIONS																		
DN	CLASS	A	A	Е	3		С		D		E		F (RF)		FF)	F2 (RTJ)	(3	# HOLES
1"	150	108	(4.25)	79.4	(3.16)	14.3	(0.56)			16	(0.63)	50.8	(2)	50.8	(2)	-		-	4
'	300/600	124	(4.88)	88.9	(3.5)	17.5	(0.69)			19	(0.75)	50.8	(2)	50.8	(2)	-		-	4
1 1/2"	150	127	(5)	98.4	(3.87)	17.5	(0.69)			16	(0.63)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
1 1/2	300/600	156	(6.14)	114.3	(4.5)	22.2	(0.87)			22	(0.87)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	17.5	(0.69)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	101.6 (4.00)	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	20.7	(8.0)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	25.4	(1)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	22.3	(0.87)	114.3	(4.50)	19	(0.75)	127	(5)	127	(5)	133.4 (5.25)	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	27	(1.06)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	31.8	(1.25)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	22.3	(0.87)	149.2	(5.87)	19	(0.75)	158	(6.22)	158	(6.22)	171.5 (6.75)	89	(3.5)	8
4"	300	254	(10)	200	(7.87)	30.2	(1.18)	149.2	(5.87)	22	(0.87)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8
	600	273	(10.75)	215.9	(8.5)	38.1	(1.5)	149.2	(5.87)	25	(1)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8

	EN 1092-1 / DIN2501									DIMENSIONS - RF/ FF							
DN	PN	,	4	E	3	С		Е		F		(G	# HOLES			
25	10/40	115	(4.53)	85	(3.35)	18	(0.71)	14	(0.55)	68	(2.68)		-	4			
40	10/40	150	(5.91)	110	(4.33)	18	(0.71)	18	(0.71)	88	(3.46)	73	(2.87)	4			
50	10/40	165	(6.50)	125	(4.92)	20	(0.78)	18	(0.71)	102	(4.01)	48	(1.89)	4			
80	10/40	200	(7.87)	160	(6.30)	24	(0.95)	18	(0.71)	138	(5.43)	73	(2.87)	8			
100	10/16	220	(8.67)	180	(7.08)	20	(0.78)	18	(0.71)	158	(6.22)	89	(3.5)	8			
100	25/40	235	(9.25)	190	(7.50)	24	(0.95)	22	(0.87)	162	(6.38)	89	(3.5)	8			

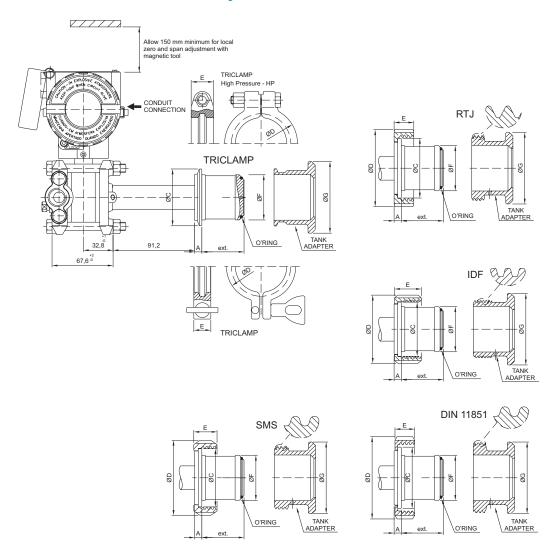

NOTES:

- -EXTENSION LENGTH IN mm(in): 0, 50 (1.96), 100 (3.93), 150(5.9) or 200 (7.87) -FOR 1" AND DN25 THE EXTENSION LENGTH IS 0 mm -DIMENSIONS IN mm(in)

LD300L - Flanged Pressure Transmitter with Housing

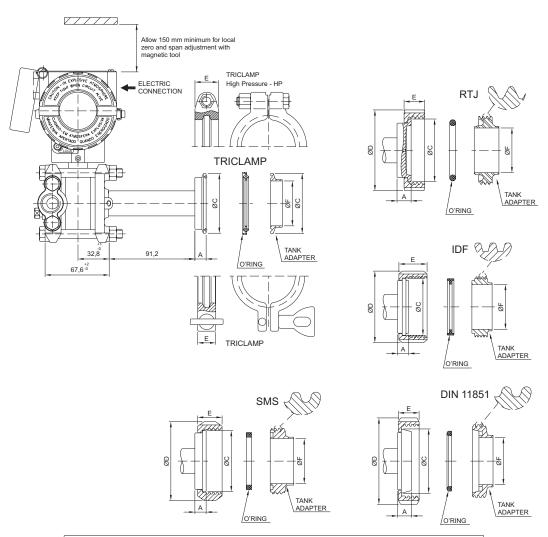
DIMENSIONS IN mm (")

ANSI-B 16.5 DIMENSIONS											
DN	CLASS	Н	J								
1.1/2"		73,2 (2,88)	48 (1,89)								
2"	ALL	91,9 (3,62)	60 (2,36)								
3"		127 (5,00)	89 (3,50)								
4"		158 (6,22)	115 (4,53)								
DIN EN10	92-1/ DIN2501/2	2526 FORM D	DIMENSIONS								
DN	PN	Н	J								
40		88 (3,46)	48 (1,89)								
50	ALL	102 (4,02)	60 (2,36)								
80		138 (5,43)	89 (3,50)								
100		158 (6,22)	115 (4,53)								
	JIS B 2202 D	IMENSIONS									
DN	CLASS	Н	J								
40A	20K	81 (3,19)	48 (1,89)								
50A	10K	96 (3,78)	60 (1,36)								
50A	40K	105 (4,13)	60 (1,36)								
004	10K	126 (4,96)	89 (3,50)								
80A	20K	132 (5,20)	89 (3,50)								
100A	10K	151 (5,94)	115 (4,53)								


DIMENSIONS IN mm (")

	ANSI-B 16.5 DIMENSIONS - RTJ FACE													
DN	CLASS	F1	O`RING	H1	J									
	150	65,1 (2,56)	R19	82,5 (3,25)	48 (1,89)									
	300	68,3 (2,69)	R20	90,5 (3,56)	48 (1,89)									
1.1/2"	600	68,3 (2,69)	R20	90,5 (3,56)	48 (1,89)									
	1500	68,3 (2,69)	R20	92 (3,62)	48 (1,89)									
	2500	82,6 (3,25)	R23	114 (4,50)	48 (1,89)									
	150	82,6 (3,25)	R22	102 (4,00)	60 (2,36)									
	300	82,6 (3,25)	R23	108 (4,25)	60 (2,36)									
2"	600	82,6 (3,25)	R23	108 (4,25)	60 (2,36)									
	1500	95,3 (3,75)	R24	124 (4,88)	60 (2,36)									
	2500	101,6 (4,00)	R26	133 (5,25)	60 (2,36)									
	150	114,3 (4,50)	R29	133 (5,25)	89 (3,50)									
3"	300	123,8 (4,87)	R31	146 (5,75)	89 (3,50)									
	600	123,8 (4,87)	R31	146 (5,75)	89 (3,50)									
	150	149,2 (5,87)	R36	171 (6,75)	115 (4,53)									
4"	300	149,2 (5,87)	R37	175 (6,88)	115 (4,53)									
	600	149,2 (5,87)	R37	175 (6,88)	115 (4,53)									

LD300S - Sanitary Transmitter with Extension



LD300S												
CONNECTION WITH			Dime	nsions in m	nm (")							
EXTENSION	Α	ØС	ØD	E	ØF	ØG	EXT.					
Tri-Clamp DN50	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Tri-Clamp DN50 HP	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Tri-Clamp - 2"	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Tri-Clamp - 2" HP	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Tri-Clamp - 3"	8 (0.315)	91 (3.58)	110 (4.33)	18 (0.71)	72.5 (2.85)	100 (3.94)	50 (1.96)					
Tri-Clamp - 3" HP	8 (0.315)	91 (3.58)	115 (4.53)	25 (0.98)	72.5 (2.85)	100 (3.94)	50 (1.96)					
Threaded DN25 - DIN 11851	6 (0.24)	47.5 (1.87)	63 (2.48)	21 (0.83)	43.2 (1.7)	80 (3.15)	26.3 (1.03)					
Threaded DN40 - DIN 11851	8 (0.315)	56 (2.2)	78 (3.07)	21 (0.83)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Threaded DN50 - DIN 11851	8 (0.315)	68.5 (2.7)	92 (3.62)	22 (0.86)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Threaded DN80 - DIN 11851	8 (0.315)	100 (3.94)	127 (5)	29 (1.14)	72.5 (2.85)	100 (3.94)	50 (1.96)					
Threaded SMS - 2"	8 (0.315)	65 (2.56)	84 (3.3)	26 (1.02)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Threaded SMS - 3"	8 (0.315)	93 (3.66)	113 (4.45)	32 (1.26)	72.5 (2.85)	100 (3.94)	50 (1.96)					
Threaded RJT - 2"	8 (0.315)	66.7 (2.63)	86 (3.38)	22 (0.86)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Threaded RJT - 3"	8 (0.315)	92 (3.62)	112 (4.41)	22.2 (0.87)	72.5 (2.85)	100 (3.94)	50 (1.96)					
Threaded IDF - 2"	8 (0.315)	60.5 (2.38)	76.2 (3)	30 (1.18)	50.5 (1.99)	80 (3.15)	48 (1.89)					
Threaded IDF - 3"	8 (0.315)	87.5 (3.44)	101.6 (4)	30 (1.18)	72.5 (2.85)	100 (3.94)	50 (1.96)					

LD300S - Sanitary Transmitter without Extension

LD300S												
CONNECTION WITHOUT			Dime	nsions in m	nm (")							
EXTENSION	Α	ØС	ØD	E	ØF	ØG	EXT.					
Tri-Clamp DN50	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.5 (1.87)							
Tri-Clamp - 1 1/2"	12 (0.47)	50 (1.96)	61 (2.4)	18 (0.71)	35 (1.38)							
Tri-Clamp - 1 1/2" HP	12 (0.47)	50 (1.96)	66 (2.59)	25 (0.98)	35 (1.38)							
Tri-Clamp - 2"	12 (0.47)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.6 (1.87)							
Tri-Clamp - 2" HP	12 (0.47)	63.5 (2.5)	81 (3.19)	25 (0.98)	47.6 (1.87)							
Tri-Clamp - 3"	12 (0.47)	91 (3.58)	110 (4.33)	18 (0.71)	72 (2.83)							
Tri-Clamp - 3" HP	12 (0.47)	91 (3.58)	115 (4.53)	25 (0.98)	72 (2.83)							
Threaded DN40 - DIN 11851	13 (0.51)	56 (2.2)	78 (3.07)	21 (0.83)	38 (1.5)							
Threaded DN50 - DIN 11851	15 (0.59)	68.5 (2.7)	92 (3.62)	22 (0.86)	50 (1.96)							
Threaded DN80 - DIN 11851	16 (0.63)	100 (3.94)	127 (5)	29 (1.14)	81 (3.19)							
Threaded SMS - 1 1/2"	12 (0.47)	55 (2.16)	74 (2.91)	25 (0.98)	35 (1.38)							
Threaded SMS - 2"	12 (0.47)	65 (2.56)	84 (3.3)	26 (1.02)	48.6 (1.91)							
Threaded SMS - 3"	12 (0.47)	93 (3.66)	113 (4.45)	32 (1.26)	73 (2.87)							
Threaded RJT - 2"	15 (0.59)	66.7 (2.63)	86 (3.38)	22 (0.86)	47.6 (1.87)							
Threaded RJT - 3"	15 (0.59)	92 (3.62)	112 (4.41)	22.2 (0.87)	73 (2.87)							
Threaded IDF - 2"	12 (0.47)	60.5 (2.38)	76 (2.99)	30 (1.18)	47.6 (1.87)							
Threaded IDF - 3"	12 (0.47)	87.5 (3.44)	101.6 (4)	30 (1.18)	73 (2.87)							

Specifications and information are subject to change without notice. Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

